目录
显示
题目链接
https://www.luogu.org/problem/P3197
题解
考虑计算不越狱的方案数。
第一个人有 \(m\) 种信仰,后面每个人都有 \(m-1\) 种信仰,显然不越狱的方案数为 \(m \times (m-1)^{n-1}\) 种方案。
总方案数为 \(m^n\) 种,除去不越狱的剩下的显然都是越狱了。
#include <iostream>
#define MOD 100003
using namespace std;
long long fpow(long long a,long long b)
{
long long ans=1;
while(b)
{
if(b&1)ans=ans*a%MOD;
a=a*a%MOD;
b>>=1;
}
return ans;
}
int main()
{
long long m,n;
cin>>m>>n;
cout<<(fpow(m,n)-(m%MOD)*fpow(m-1,n-1)%MOD+MOD)%MOD<<endl;
return 0;
}