11.20 模拟赛

Studying Father

2020年11月20日

题目名称	领带	准高速电车	关灯	排序
题目类型	传统	传统	传统	传统
目录	neckties	train	light	sort
输入文件名	neckties.in	train.in	light.in	sort.in
输出文件名	neckties.out	train.out	light.out	sort.out
时间限制	1.0 秒	1.0 秒	1.0 秒	6.0 秒
内存限制	256 MiB	256 MiB	512 MiB	256 MiB
子任务数目	3	3	20	10
子任务是否等分	否	否	是	是

注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 4. 题目栈空间限制和内存限制一致。
- 5. 评测在 NovaOJ 上进行, 比赛采用 OI 赛制, 即每道题取最后一次提交计分。
- 6. 对于采用子任务捆绑测试的题目,你在该题上的得分等于各子任务的得分之和,而各子任务的得分,等于该子任务下每个测试点的最低得分。
- 7. 赛后可以在组题人的洛谷博客1上找到题解。

¹https://studyingfather.blog.luogu.org/simulation-contests-log

1 领带

1.1 题目描述

W 公司的最新发明是「只不过是长的领带」。共有 N+1 条领带,并以 $1, \ldots, N+1$ 编号。第 i 种领带的长度为 A_i ,其中 $1 \le i \le N+1$ 。

公司聚集了他们的员工,并准备举办一场试戴派对。参加该聚会的员工共有 N 个,且第 j 个员工一开始戴着长度为 B_i 的领带,其中 $1 \le j \le N$ 。派对的流程如下:

- 1. W 公司的 CEO 首先选出一条领带,它将不会在接下来的派对中使用。
- 2. 然后,每个员工从其余领带中选择一条,且需保证没有两个员工选择了同一条领带。
- 3. 最终,每个员工取下一开始戴着的领带,并试戴他/她选择的领带。

若某个员工一开始戴着的领带长度为 b 而最后试戴的领带长度为 a,则他 / 她会产生 $\max\{a-b,0\}$ 个单位的**奇怪感**。整场派对的**奇怪度**定义为所有员工中最大的奇怪感。

由此,我们定义 C_k 为当 CEO 选择第 k 条领带时,整场派对最后可能的最小奇怪度。请你对于给定的 $A_1, A_2, \ldots, A_{N+1}$ 和 B_1, B_2, \ldots, B_N 求出 $C_1, C_2, \ldots, C_{N+1}$ 。

1.2 输入格式

第一行,一个正整数 N,表示员工总数。

第二行,N+1 个正整数 $A_1, A_2, \ldots, A_{N+1}$,表示每条领带的长度。

第三行,N个正整数, B_1, B_2, \ldots, B_N ,表示每个员工初始穿戴的领带的长度。

1.3 输出格式

一行,N+1 个整数 $C_1, C_2, \ldots, C_{N+1}$ 。

1.4 样例

1.4.1 样例输入 1

1 3

2 4 3 7 6

3 2 6 4

1.4.2 样例输出 1

. 2 2 1 1

1.4.3 样例解释 1

以下为一场试戴派对的例子:

- CEO 选择第 4 条领带。
- 员工1选择第1条领带,员工2选择第2条领带,员工3选择第3条领带。

• 每个员工试戴其选择的领带。

此时,所有员工的奇怪感分别为 2,0,3, 故整场派对的奇怪度为 3。 实际上, 我们可以通过改变员工的决策将整场派对的奇怪度减少到 1。例如:

- CEO 选择第 4 条领带。
- 员工1选择第2条领带,员工2选择第3条领带,员工3选择第1条领带。
- 每个员工试戴其选择的领带。

此时,所有员工的奇怪感分别为 1,1,0,故整场派对的奇怪度为 1。若 CEO 选择第 4 条领带,这便是可能的最小的奇怪度,因此 $C_4=1$ 。

1.4.4 样例输入 2

1 5

2 4 7 9 10 11 12

3 3 5 7 9 11

1.4.5 样例输出 2

1 4 4 3 2 2 2

1.5 子任务

对于所有测试数据, $1 \le N \le 2 \times 10^5, 1 \le A_i \le 10^9, 1 \le B_j \le 10^9$ $(1 \le i \le N+1, 1 \le j \le N)$ 。

子任务编号	分值	$N \leq$
1	1	10
2	8	2000
3	91	2×10^5

2 准高速电车

2.1 题目描述

X 铁路公司是 X 国唯一的铁路公司。

在某条铁路沿线共有 N 座车站,依次编号为 1...N。目前,正在服役的车次按照运行速度可分为两类**:高速电车**(简称快车)与**普通电车**(简称慢车)。

- 慢车每站都停。乘慢车时,对于任意一座车站 $i(1 \le i < N)$,车站 i 到车站 i+1 用时均为 A。
- 快车只在车站 S_1, S_2, \ldots, S_M 停车 $(1 = S_1 < S_2 < \cdots < S_M = N)$ 。乘快车时,对于任意一座车站 $i(1 \le i < N)$,车站 i 到车站 i+1 用时均为 B。

X 铁路公司现拟开设第三类车次**:准高速电车**(简称准快车)。乘准快车时,对于任意一座车站 $i(1 \le i < N)$,车站 i 到车站 i+1 用时均为 C。准快车的停站点尚未确定,但满足以下条件:

- 快车在哪些站停车,准快车就得在哪些站停车。
- 准快车必须恰好有 K 个停站点。

X 铁路公司希望,在 T 分钟内(**不含换乘时间**),车站 1 可以抵达的车站(不含车站 1)的数量尽可能多。但是,「后经过的车站的编号」必须比「先经过的车站的编号」大。

求出在 T 分钟内,可抵达车站的最大数目。

2.2 输入格式

第一行有三个整数 N, M, K,用空格分隔。

第二行有三个整数 A, B, C,用空格分隔。

第三行有一个整数 T。

在接下来的 M 行中,第 i 行有一个整数 S_i 。

输入的所有数的含义见题目描述。

2.3 输出格式

一行,一个整数,表示在T分钟内,可抵达车站的最大数目。

2.4 样例

2.4.1 样例输入 1

```
      1
      10
      3
      5

      2
      10
      3
      5

      3
      30
      4
      1

      5
      6
      6
      10
```

2.4.2 样例输出 1

1 8

2.4.3 样例解释 1

在这组样例中,这条铁路上有 10 个车站,快车在车站 1,6,10 停车。如果准快车在车站 1,5,6,8,10 停车,除车站 9 外的其它所有车站都可在 30 分钟内到达。

以下是从地点1到达某些站点的最快方案:

- 到达车站 3: 乘坐慢车, 耗时 20 分钟。
- 到达车站 7: 先乘坐快车, 在车站 6 转慢车, 耗时 25 分钟。
- 到达车站 8: 先乘坐快车, 在车站 6 转准快车, 耗时 25 分钟。
- 到达车站 9: 先乘坐快车, 在车站 6 转准快车, 在车站 8 再转慢车, 耗时 35 分钟。

2.4.4 样例输入 2

```
      1
      10
      3
      5

      2
      10
      3
      5

      3
      25

      4
      1

      5
      6

      6
      10
```

2.4.5 样例输出 2

1 7

2.4.6 样例输入 3

```
1 90 10 12
2 100000 1000 10000
3 10000
  1
5
   10
6 20
   30
7
8
  40
9
   50
10 60
11
   70
  80
12
  90
13
```

2.4.7 样例输出 3

1 2

2.4.8 样例输入 4

- 1 12 3 4
- 2 10 1 2
- 3 | 30
- 4 1
- 5 11
- 6 12

2.4.9 样例输出 4

1 8

2.4.10 样例输入 5

- 1 300 8 16
- 2 345678901 123456789 234567890
- 3 12345678901
- 4 1
- 5 10
- 6 77
- 7 82
- 8 | 137
- 9 210
- 10 297
- 11 300

2.4.11 样例输出 5

1 72

2.4.12 样例输入 6

- 1 1000000000 2 3000
- 2 1000000000 1 2
- 3 1000000000
- 4
- 5 1000000000

2.4.13 样例输出 6

1 3000

2.5 子任务

对于所有数据, $1 \le N \le 10^9, 2 \le M \le K \le 3000, K \le N, 1 \le B < C < A \le 10^9, 1 \le T \le 10^{18}, 1 = S_1 < S_2 < \dots < S_M = N$ 。

- 子任务 1 (18 分): $N \le 300, K M = 2, A \le 10^6, T \le 10^9$ 。
- 子任务 2 (30 分): N ≤ 300。
- 子任务 3 (52 分): 无特殊约束。

3 关灯

3.1 题目描述

Y 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为从 1 到 n 的正整数。

每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏的目标是使所有灯都灭掉。

但是当操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被改变,即从亮变成灭,或者是从灭变成亮。

Y 君发现这个游戏很难,于是想到了这样的一个策略,每次等概率随机操作一个开关,直到所有灯都灭掉。

这个策略需要的操作次数很多,Y 君想到这样的一个优化。如果当前局面,可以通过操作小于等于 k 个开关使所有灯都灭掉,那么他将不再随机,直接选择操作次数最小的操作方法(这个策略显然小于等于 k 步)操作这些开关。

Y 君想知道按照这个策略(也就是先随机操作,最后小于等于 k 步,使用操作次数最小的操作方法)的操作次数的期望。

这个期望可能很大,但是 Y 君发现这个期望乘以 n 的阶乘一定是整数,所以他只需要知道这个整数对 100003 取模之后的结果。

3.2 输入格式

第一行两个整数 n,k。

接下来一行 n 个整数,每个整数是 0 或者 1,其中第 i 个整数表示第 i 个灯的初始情况。

3.3 输出格式

输出一行,为操作次数的期望乘以n的阶乘对100003取模之后的结果。

3.4 样例

3.4.1 样例输入 1

1 4 0

2 0 0 1 1

3.4.2 样例输出 1

1 512

3.4.3 样例输入 2

1 5 0

2 1 0 1 1 1

3.4.4 样例输出 2

L 5120

3.5 子任务

对于 0% 的测试点,和样例一模一样;

对于另外 30% 的测试点, $n \le 10$;

对于另外 20% 的测试点, $n \le 100$;

对于另外 30% 的测试点, $n \le 1000$;

对于 100% 的测试点, $1 \le n \le 100000, 0 \le k \le n$;

对于以上每部分测试点,均有一半的数据满足 k=n。

3.6 提示

对于一个离散型随机变量 X,若其可能的取值为 X_1,X_2,\ldots,X_k ,各取值对应的概率分别是 P_1,P_2,\ldots,P_k (满足 $\sum_{i=1}^k P_i=1$),则 X 的期望 E(X) 满足如下等式:

$$E(X) = \sum_{i=1}^{k} X_i P_i$$

4 排序

4.1 题目描述

小 Z 喜欢上了数字序列。因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他。

这个难题是这样子的:给出一个 1 到 n 的全排列,现在对这个全排列序列进行 m 次局部排序,排序分为两种:

- 1. (0, l, r) 表示将区间 [l, r] 的数字升序排序;
- 2. (1,l,r) 表示将区间 [l,r] 的数字降序排序。

排序后询问第 q 位置上的数字。

4.2 输入格式

输入数据的第一行为两个整数 n 和 m。n 表示序列的长度,m 表示局部排序的次数。第二行为 n 个整数,表示 1 到 n 的一个全排列。

接下来输入 m 行,每一行有三个整数 op, l, r, op 为 0 代表升序排序,op 为 1 代表降序排序, l, r 表示排序的区间。最后输入一个整数 q, q 表示排序完之后询问的位置。

4.3 输出格式

输出数据仅有一行,一个整数,表示按照顺序将全部的部分排序结束后第 q 位置上的数字。

4.4 样例

4.4.1 样例输入

```
1 6 3
2 1 6 2 5 3 4
3 0 1 4
4 1 3 6
5 0 2 4
6 3
```

4.4.2 样例输出

1 5

4.5 子任务

对于 30% 的数据, $n, m \le 100$ 。 对于所有数据, $1 \le n, m \le 10^5$, $1 \le q \le n$ 。